a2 United States Patent

Anderson

US009160374B2

US 9,160,374 B2
*QOct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54) ACCELERATED ERASURE CODING SYSTEM
AND METHOD
(71) Applicant: STREAMSCALE, INC., Los Angeles,
CA (US)
(72) Michael H. Anderson, Los Angeles, CA
(US)

Inventor:

(73) STREAMSCALE, INC., Los Angeles,

CA (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/223,740

Filed: Mar. 24,2014

Prior Publication Data

US 2015/0012796 Al Jan. 8, 2015

(65)

Related U.S. Application Data

Continuation of application No. 13/341,833, filed on
Dec. 30, 2011, now Pat. No. 8,683,296.

(63)

Int. Cl1.
HO3M 13/00
HO3M 1337

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC HO3M 13/616 (2013.01); GOGF 11/1076

(2013.01); GOGF 11/1092 (2013.01);
(Continued)

Field of Classification Search
CPC HO3M 13/373; HO3M 13/3761; HO3M
13/3776;, HO3M 13/616; HO3M 13/1191;
HO3M 13/134; HO3M 13/1515; HO4L 1/0043;

(58)

100

HO04L 1/0057; GOG6F 11/1076; GO6F 11/1092;
GOG6F 11/1096; GO6F 12/0238; GOG6F 12/06;
GOG6F 2211/1057, GO6F 2211/109
714/6.24,6.1,6.11,6.2, 6.21, 6.32,
714/763,752, 758, 768, 770, 773, 784, 786

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,654,924 B1* 11/2003 Hassneretal. 714/758
6,823,425 B2* 11/2004 Ghoshetal. 711/114
(Continued)
OTHER PUBLICATIONS

Hafhner et al., Matrix Methods for Lost Data Reconstruction in Era-
sure Codes, Nov. 16, 2005, USENIX FAST 05 Paper, pp. 1-26.*
Anvin; The mathematics of RAID-6; First Version Jan. 20, 2004; Last
Updated Dec. 20, 2011; pp. 1-9.

Maddock, et al.; White Paper, Surviving Two Disk Failures Introduc-
ing Various “RAID 6” Implementations; Xyratex; pp. 1-13.

(Continued)

Primary Examiner — John J Tabone, Ir.

(74) Attorney, Agent, or Firm — Christie, Parker & Hale,
LLP

(57) ABSTRACT

An accelerated erasure coding system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core, stor-
age medium, and computer instructions are configured to
implement an erasure coding system, which includes: a data
matrix for holding original data in the main memory; a check
matrix for holding check data in the main memory; an encod-
ing matrix for holding first factors in the main memory, the
first factors being for encoding the original data into the check
data; and a thread for executing on the processing core. The
thread includes: a parallel multiplier for concurrently multi-
plying multiple entries of the data matrix by a single entry of
the encoding matrix; and a first sequencer for ordering opera-
tions through the data matrix and the encoding matrix using
the parallel multiplier to generate the check data.

18 Claims, 9 Drawing Sheets

W
120 10
CPU CPU 140 CPU CPU
+L1 + L1 +L1 + L1
P 1 1 1
130 130
Die0 | L2 Memory L2 | Die1
I 1 I 1
CPU CPU CPU cPU
+L1 + L1 +L1 + L1
1o
[150

US 9,160,374 B2

Page 2
(51) Int.ClL (56) References Cited
HO3M 13/13 (2006.01) U.S. PATENT DOCUMENTS
HO4L 1/00 (2006.01) o
GOGF 11/10 (2006.01) 7,350,126 B2* 3/2008 Winograd etal. 714/752
7,930,337 B2 4/2011 Hasenplaugh et al.
GO6F 12/02 (2006.01) 8.145.041 B2* 3/2012 Jacobson ... 714/6.24
GOGF 12/06 (2006.01) 8,352,847 B2* 12013 Gunnam 714/801
2011/0029756 Al* 2/2011 Biscondi et al. 712/22
HO3M 13/15 (2006.01) 2012/0272036 A1* 10/2012 Muralimanohar et al. ... 711/202
HO3M 13/11 (2006.01) 2013/0108048 Al* 52013 Grube et al. 380/270
2013/0110962 Al* 572013 Grubeetal. 709213
(52) US.ClL 2013/0111552 AL* 52013 Grube et al. ovvvvverreeeneen 726/3
CPC GO6F11/1096 (2013.01); GOGF 12/0238 2013/0124932 Al* 5/2013 Schuhetal. 714/718
(2013.01). GO6F 12/06 (2013.01). HO3M 2013/0173956 Al1* 7/2013 Anderson 714/6.24
b ’ OTHER PUBLICATIONS

13/1191 (2013.01); HO3M 13/134 (2013.01);
HO3M 13/1515 (2013.01); HO3M 13/373
(2013.01); HO3M 13/3761 (2013.01); HO3M
13/3776 (2013.01); HO4L 1/0043 (2013.01);
HO4L 1/0057 (2013.01); GO6F 2211/1057
(2013.01)

Plank; All About Erasure Codes:—Reed-Solomon Coding—I.DPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL—
Aug. 20, 2004; 52 sheets.

* cited by examiner

US 9,160,374 B2

Sheet 1 of 9

Oct. 13, 2015

U.S. Patent

N

7 81Aq ‘N Mo8yo

Z 81Aq ‘N Yo8yo

L 9JAQ ‘W ¥o8YD

7 @1Ag ‘Z Mosyo

Z 91AQq ‘Z yo8yo

L 9)Aq ‘Z Joayd

N

7 81Ag ‘| »o8yo

Z 9Aq ‘| Yoayo

| ©1AQ ‘| ¥o8yo

—0¢€

7 9)Aq ‘N ejep

Z 9Aq ‘N elep

| @AQ ‘N elep

7 91Aq ‘Z elep

Z 91Aq ‘Z ejep

| @Aq ‘¢ elep

79)Aq ‘| elep

Z ®Aq ‘| ejep

| ©Aq ‘| ejep

S

——0¢

L Old

AN

ol

US 9,160,374 B2

Sheet 2 of 9

Oct. 13, 2015

U.S. Patent

A BIEp 1S0| pa1oniisuooal pue X elep BUIAIAINS Wol) Blep }o8yo
1S0] Aue ajesaubal ‘enwioy Buisn |_g Xujew uoinjos pue ‘y xujew Buipoous
‘M B1Ep %239 BUIAIAINS ‘X Blep BUIAIAINS WO A BJep }SO| JONJ}SU029yY

— 0GE

h

(XxV = M) x ,-8 = A 0S ‘Axg + XxV = M diysuoije|ai ay} saysijes
A Blep 1s0| ¢, _g xujew uonnjos aonpoud 0} g xujew buipoous HaAu|

— ObE

A

b1 Jamo| Ul (4x4) g Xuew Buipodus pue ‘Ys| Jamoj
ul (Mx4) v xuyew Buipoous ‘yybu saddn ul (4x¥) O XUjew 019z ‘Ys| Joddn
ur (MxM) | xujew Ajpuspl :s99ujBW-gNS JNOY OJUl | Xujyew Buiposus yds

— 0€¢€

WI0JJOg UO AA Blep Yo8yo Buiaiains pue dol uo X ejep BulAians Buiaes)
‘SMOJ Blep Yoayd Buiniains 4 Ajuo Buidesy] ajiym Smol elep 1so| 4 ayl buiarowal
Ag ,D xuew Buipoous azis paonpal 0} O XUlew EJEP Papoous azIs ||N} 8onpay

— 0¢¢€

4

1yB11 8y] 0) SUWIN|JOO BALIP Blep pajie) 4 8y} BuiAOW ‘SMO. SALIP
Yoayo Bulalains 4 Ajuo Buideay ajiym smold aAup elep pajie} 4 ayl buiarowal
AQ | xuyew Buipoous azIs paosnpal 0} 3 Xulew Buipodsus 8zis [N} 9oNpay

— 0l¢

¢ 9ld

/
00¢

US 9,160,374 B2

Sheet 3 of 9

Oct. 13, 2015

U.S. Patent

s19)s16a1 Indino ey} ui syonpoud ajqqiu Jepio-ybiy pue sjqqiu
Jepio-mo| Buipuodsaulod ay) Buneinwnooe ‘sialsibal yolelos sy} ul
elep 9|jqqiu 8y} uo g4NHSd @sn — (ejep jo sejhq g¢ Jod aouo) Aldniniy

— 0Gv

(se1qqiu) eyep yojelos Jo sia)sibal unoy ojul (selhq) elep
pueiado Jo sia)siBos om} arow — (elep Jo Sa)AQ g¢ Jad aouo) alnosxyg

— Obv

A

si19)s16a1 1ndino unoy Jes|o {1sysibal Jeyjoue ojui syonpold ojqqgiu
Joplo-moj 8y} 1o} 1eadal ‘is)sibal suo ojul J0)oe) JUsLIND By} Joj Alowaw wodlj
syonpoud ajqqiu Japlo-ybiy sjqissod g| sy} peoj — (|jed Jad aouo) ajndaxy

— 0tV

s|jeo Buipeaoons uo Alowaw wouy Buipeoial ploAe 0} suoje si8)sibal
asay) anea| |im Jaidiynw dnyooj |9jjeled sy ‘sis)sibal puelado 1noy ojul Alowsw
wioJj eyep puelado Jo s8JAq 19 1xau peoj — (eyep puelado Jad aouo) asedaid

— 0¢v

A

10]OB] BUO puk 3|ggiu auo Jo sjonpold sjqissod g| 8y} Jo
salua 9gz Buluieluos suo yoes ‘se|qqiu Jepio-ybiy Joj auo ‘sejqqiu
J9pIO-MO] 10J BUO ‘S8|ge} dnNY 00| OM] plINg — (BWi} BUO0) azijeliu|

— Oy

€ Old

/
00V

US 9,160,374 B2

Sheet 4 of 9

Oct. 13, 2015

U.S. Patent

Blep 398Yo aALIp ¥oayo Ajed-uou sy} ajepdn o} ejep pueiado
1O s8JAQ 9 S,8ALP 1Xau uo Jajdiynw dnxooj [ajjeed Buljjed ‘SaALIP 3oayo
Aysed-uou ayj jJo yoes ybnolyy dooj :eAup ejep xau ssadoid — dooj Jauu|

4

dooj Jeuul [|eo pue ‘ejep ooy aaLp Aled 0y siy) ppe ‘(dooj Jsuul
ssoJoe paalesald) Alowsw wouy ejep puelado Jo sslAd 9 1XaU peo| ‘SeAlIp
BJEp JBY)0 8U] JO Yoea 10} :SSALIP elep Jayjo ssadoud — dooj a|ppiw puooss

A

BIEP Y0oayd aALIp %08y Ajued-uou azijeniul 0} ejep puesado Jo soalfq
$9 S, 8ALIP Blep 181l uo Jaidinw dnxoo) |ojesed Buijjed ‘seAup yoayd Ajied
-uou 8y} Jo yoes ybnouy) dooj :aAup ejep isay ssaooid — dooj ajppiw iS4l

A

B1EP Y2o8YD SALIP %08yd Ajued azijeiiul pue Alowsw Wolj SAUP elep
18414 1o} elep puelado jJo s8lAg 9 1Xau peo) ‘oduls 8y} JO SHI0|q aY} JO Yyoes
wioJy elep pueltado jo syunyd ajAg-19 Jo dnoub xau ssasoid — dooj JeinQ

A

ejep Jo adujs e ssoloe syunyd alAg-9 buipuodsaliod Jo

v Ol

— 069

— OPS

— 0€9

— 0¢S

sdno.B aANoasU0D 10} elep Yoayo ajelauab o} atedaid — uonesoau| [Ols

/
009

US 9,160,374 B2

Sheet 5 of 9

Oct. 13, 2015

U.S. Patent

H

ejep pueiado Jo $8]Aq 9 S,8ALP elep BUIAIAINS }SJl)) UO paseq ejep

yo8Yo Jiey) azijeiiul oy Jaidiyinw dnxooj [ajjesed ||ed ‘SeALIp ¥98yo pajie}

oY) JO UOES U0} :Blep SALIP o8y pajie} azijeniul — doo| a|ppil puodes

A

XxV Blep oayo jented azijeiiul 0} ejep puesado Jo s8lAq 9 S, AUp
ejep BuiAIAINS JsJi) uo Jaijdiynw dnyooj [9jesed Buijjes ‘SaALIp }98yd BUIAIAINS

9y} JO

yoes ybno.ayy dooj :aAup elep Bulalans Jsil ssaooud — dooj ajppiw 1sJi

A

Alowaw wolj aALp elep BulAlAIns 1sJ1) 10} elep puetado jo s8lAq 19

IXau peo| ‘elep puelado Jo syuNyo 814g-19 Jo dnoib xau sses0id — dooj J8)nQ

A

ejep Jo adu)s e ssoloe syuUNyd 8Ag-9 ajdijnw 1o} ejep 3}oayo
1SO| 8)eiausbal pue elep |euiblio 1So| 1oNJ1Su0oal 0} aiedald — UOIJBIOAU|

G Old

0v9

0€9

029

0L9

009

US 9,160,374 B2

Sheet 6 of 9

Oct. 13, 2015

U.S. Patent

H

XxY Blep %08yo |eied 0} ejep Jo sa)JAq 179 J18UY} ppe
0} Joeppe |9|ieied Buijjed ‘saAlp 3oayd Bulalans By} Jo yoses ybnouy) dooj
XxV — M 9onpoud o} ejep 308yd Bulainins ppe — doo| ajppiw Yuno

ejep puelado Jo s8JAQ $9 S,9ALP elep BUIAIAINS }Xau 8y} uo

paseq ejep 3osyo Jiay) ajepdn o} Jaiidninw dnyooj [sjjeled ||ed ‘SoALIp %09yd
pa|ie) 9y JO Yoes 10} :elep SAup Yo8yo pajie} aiepdn — dooj Jauuj puodes

A

XxV elep 3oayo |enJed ajepdn o} elep puelado jo S8JAqQ 9 S,9AUP
ejep BulAIAINS Jxau uo Jaljdiinw dnyooj [ojjelted Builjjes ‘saAlp ¥oayds BUulAIAInS
ay) Jo yoes ybnouiy) dooj :aAup ejep BUIAIAINS 1xou ssa20.id — doo| Jauul }sdi4

9 'Old

A

(sdooj Jauui ssouoe pantasald) Alowsw wol) ejep pueiado
J0 $81AQ 19 1X8U peo| ‘SaAlIp ejep BUIAIAINS 18y}0 8y} Jo yoes
10} :S8ALP elep BulAIAINS JBYjo ssao0ad — doo| ajppiw paiy |

H

089

049

099

0S9

009

US 9,160,374 B2

Sheet 7 of 9

Oct. 13, 2015

U.S. Patent

(paaisap J1) ejep 3oayo pajelausb Aimsu a10)s
‘OALIP %08Yd pajie} Yyoes 1oj — doo| S|ppi YIXIS

A

— 0Z4

B]ep 1S0| PajonJisuooal Jo S8lAQ 9 S,9ALP Elep Pajie} IXau 8y} uo
paseq ejep osyo Jisy) ayepdn oy Jaidinw dnxooj |jjeled ||ed ‘SBALP }o8YD — |/
pa|ie) 9y} JO Yoea 10} :ejep aALIp %08yod pajie) ajepdn — dooj Jsuul yuno

i
(padisap §1) peIo)s g UED YoIyM ‘BJep }SO| S,2ALIP pajie}
1Xau sjonJisuodal siy) {(Jandiynw dnyooj |gjjesed bBuisn) XxV¥ - M Pue ,_gJ0 — 00.
10)oe} 1xau Jo 1onpoud ul Buippe AQ A JO mold jxau 8)8jdwod — dooj Jauul paiyl

4

XxV — A\ Blep %o8yo |eiued 1so| pue |_g Xl}ew uoinjos Jo uoijeuiquoo
141} 0] A JO moil Jxau Buizijeniul Aq pels ((XxV - M) x -9 dlenojed — 069
‘dooj] Jauul pJiyl YlIMm UOIIBUIGUIOD Ul A Blep |eulbuo }so| — dooj a|ppiw Yy

H

L 9ld 009

US 9,160,374 B2

Sheet 8 of 9

Oct. 13, 2015

U.S. Patent

8 Old

o/l
17+ L7+ | 17+ 17+
Ndo NdD Nndo NdD
8 Y A A
Leig| z1 » Aowspy [2 0 @Ia
Ot | oL
17+ 17+ \ 17+ 17+
Ndo Ndo ovl Ndo NdD
/ \ < -7
oLl omi\
4/
001

U.S. Patent Oct. 13, 2015 Sheet 9 of 9 US 9,160,374 B2

230
230
230
230

220

200
\

210

-
—
9\

US 9,160,374 B2

1
ACCELERATED ERASURE CODING SYSTEM
AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/341,833, filed on Dec. 30, 2011, now U.S.
Pat. No. 8,683,296, issued on Mar. 25, 2014, the entire con-
tents of which is expressly incorporated herein by reference.

BACKGROUND

1. Field

Aspects of embodiments of the present invention are
directed toward an accelerated erasure coding system and
method.

2. Description of Related Art

An erasure code is a type of error-correcting code (ECC)
useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken
up into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ-
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized
blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total of N+M equal-sized blocks
after encoding. The N+M blocks may, for example, be trans-
mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded
data refers to the original data together with the check data.

The M check blocks build redundancy into the system, in a
very efficient manner, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the
N+M disk drives are functioning correctly. Note that such an
erasure code is also referred to as “optimal.” For ease of
description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if
any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data)
can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values
of N and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N
“data” drives, and using the remaining M drives as “check”
drives. Then, when any N of the N+M drives are correctly
functioning, the original data can be reconstructed, and the
check data can be regenerated.

Erasure codes (or more specifically, erasure coding sys-
tems) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive sys-
tems) or 2 (RAID6 systems), that is, for more than one or two
check drives. For example, see H. Peter Anvin, “The math-
ematics of RAID-6,” the entire content of which is incorpo-
rated herein by reference, p. 7, “Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected

20

25

30

40

45

55

2

that that will be a rare occurrence, and that performance will
not matter significantly in that case.”” See also Robert Mad-
dock et al., “Surviving Two Disk Failures,” p. 6, “The main
difficulty with this technique is that calculating the check
codes, and reconstructing data after failures, is quite complex.
It involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do it at
sufficient speed.”” In addition, see also James S. Plank, “All
About Erasure Codes: —Reed-Solomon Coding—LDPC
Coding,” slide 15 (describing computational complexity of
Reed-Solomon decoding), “Bottom line: When n & m grow,
it is brutally expensive.” Accordingly, there appears to be a
general consensus among experts in the field that erasure
coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
suchas 1 or 2.

Modern disk drives, on the other hand, are much less reli-
able than those envisioned when RAID was proposed. This is
due to their capacity growing out of proportion to their reli-
ability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems
with two check disks.

In terms of reliability, a higher check disk count is clearly
more desirable than a lower check disk count. If the count of
error events on different drives is larger than the check disk
count, data may be lost and that cannot be reconstructed from
the correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is a
service event on a RAID system where the operator mistak-
enly replaces the wrong drive or, worse yet, replaces a good
drive with a broken drive. In the absence of any generally
accepted methodology to train, certify, and measure the effec-
tiveness of service technicians, these types of events occur at
an unknown rate, but certainly occur. The foolproof solution
for protecting data in the face of multiple error events is to
increase the check disk count.

SUMMARY

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding sys-
tem that, for byte-level RAID processing (where each byte is
made up of 8 bits), performs well even for values of N+M as
large as 256 drives (for example, N=127 data drives and
M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
of size M,,,,xN,,..., or (N, .+M, , IxN_ or (M, .~1)x
N,,...o elements (e.g., bytes), which can be used, for example,
for any combination of N<N,, , data drives and M=M,, .
check drives such that N, +M,, . <256 (e.g., N, =127 and
M, ..=129,0rN, =63 and M, =193). This is an improve-
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values of N and M are possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to create
larger groups of data drives. For example, systems with two
checks disks are typically limited to group sizes of 10 or fewer
drives for reliability reasons. With a higher check disk count,

US 9,160,374 B2

3

larger groups are available, which can lead to fewer overall
components for the same unit of storage and hence, lower
cost.

Additional aspects of embodiments of the present inven-
tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ-
ing additional (non-parity) check drives.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed-So-
lomon codes. While known solution matrix algorithms com-
pute an NxN solution matrix (see, for example, J. S. Plank, “A
tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems,” Software—Practice & Experience,
27(9):995-1012, September 1997, and J. S. Plank and Y.
Ding, “Note: Correction to the 1997 tutorial on Reed-So-
lomon coding,” Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N>) operations, regard-
less of the number of failed data drives, aspects of embodi-
ments of the present invention compute only an FxF solution
matrix, where F is the number of failed data drives. The
overhead for computing this FxF solution matrix is approxi-
mately F*/3 multiplication operations and the same number
of addition operations. Not only is F<N, in almost any prac-
tical application, the number of failed data drives F is consid-
erably smaller than the number of data drives N. Accordingly,
the fast solution matrix algorithm is considerably faster than
any known approach for practical values of F and N.

Still further aspects are directed toward fast implementa-
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are directed
toward fetching the surviving (original and check) data a
minimum number of times (that is, at most once) to carry out
the data reconstruction. Some of these aspects are directed
toward efficient implementations that can maximize or sig-
nificantly leverage the available parallel processing power of
multiple cores working concurrently on the check data gen-
eration and the lost data reconstruction. Existing implemen-
tations do not attempt to accelerate these aspects of the data
generation and thus fail to achieve a comparable level of
performance.

In an exemplary embodiment of the present invention, a
system for accelerated error-correcting code (ECC) process-
ing is provided. The system includes a processing core for
executing computer instructions and accessing data from a
main memory; and a non-volatile storage medium (for
example, a disk drive, or flash memory) for storing the com-
puter instructions. The processing core, the storage medium,
and the computer instructions are configured to implement an
erasure coding system. The erasure coding system includes a
data matrix for holding original data in the main memory, a
check matrix for holding check data in the main memory, an
encoding matrix for holding first factors in the main memory,
and a thread for executing on the processing core. The first
factors are for encoding the original data into the check data.
The thread includes a parallel multiplier for concurrently
multiplying multiple data entries of a matrix by a single
factor; and a first sequencer for ordering operations through

20

25

30

40

45

50

55

4

the data matrix and the encoding matrix using the parallel
multiplier to generate the check data.

The first sequencer may be configured to access each entry
of'the data matrix from the main memory at most once while
generating the check data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data by dividing the data matrix into a
plurality of data matrices, dividing the check matrix into a
plurality of check matrices, assigning corresponding ones of
the data matrices and the check matrices to the threads, and
assigning the threads to the processing cores to concurrently
generate portions of the check data corresponding to the
check matrices from respective ones of the data matrices.

The data matrix may include a first number of rows. The
check matrix may include a second number of rows. The
encoding matrix may include the second number of rows and
the first number of columns.

The data matrix may be configured to add rows to the first
number of rows or the check matrix may be configured to add
rows to the second number of rows while the first factors
remain unchanged.

Each of entries of one of the rows of the encoding matrix
may include a multiplicative identity factor (such as 1).

The data matrix may be configured to be divided by rows
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data and including a third
number of rows. The erasure coding system may further
include a solution matrix for holding second factors in the
main memory. The second factors are for decoding the check
data into the lost original data using the surviving original
data and the first factors.

The solution matrix may include the third number of rows
and the third number of columns.

The solution matrix may further include an inverted said
third number by said third number sub-matrix ofthe encoding
matrix.

The erasure coding system may further include a first list of
rows of the data matrix corresponding to the surviving data
matrix, and a second list of rows of the data matrix corre-
sponding to the lost data matrix.

The data matrix may be configured to be divided into a
surviving data matrix for holding surviving original data of
the original data, and a lost data matrix corresponding to lost
original data of the original data. The erasure coding system
may further include a solution matrix for holding second
factors in the main memory. The second factors are for decod-
ing the check data into the lost original data using the surviv-
ing original data and the first factors. The thread may further
include a second sequencer for ordering operations through
the surviving data matrix, the encoding matrix, the check
matrix, and the solution matrix using the parallel multiplier to
reconstruct the lost original data.

The second sequencer may be further configured to access
each entry ofthe surviving data matrix from the main memory
at most once while reconstructing the lost original data.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include: a scheduler for
generating the check data and reconstructing the lost original
data by dividing the data matrix into a plurality of data matri-
ces; dividing the surviving data matrix into a plurality of
surviving data matrices; dividing the lost data matrix into a
plurality of lost data matrices; dividing the check matrix into
a plurality of check matrices; assigning corresponding ones

US 9,160,374 B2

5

of the data matrices, the surviving data matrices, the lost data
matrices, and the check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri-
ces from respective ones of the data matrices and to concur-
rently reconstruct portions of the lost original data corre-
sponding to the lost data matrices from respective ones of the
surviving data matrices and the check matrices.

The check matrix may be configured to be divided into a
surviving check matrix for holding surviving check data of
the check data, and a lost check matrix corresponding to lost
check data of the check data. The second sequencer may be
configured to order operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier to regenerate the lost
check data.

The second sequencer may be further configured to recon-
struct the lost original data concurrently with regenerating the
lost check data.

The second sequencer may be further configured to access
each entry ofthe surviving data matrix from the main memory
at most once while reconstructing the lost original data and
regenerating the lost check data.

The second sequencer may be further configured to regen-
erate the lost check data without accessing the reconstructed
lost original data from the main memory.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
erasure coding system may further include a scheduler for
generating the check data, reconstructing the lost original
data, and regenerating the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid-
ing the lost data matrix into a plurality of lost data matrices;
dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv-
ing check matrices; dividing the lost check matrix into a
plurality of lost check matrices; assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri-
ces, and the lost check matrices to the threads; and assigning
the threads to the processing cores to concurrently generate
portions of the check data corresponding to the check matri-
ces from respective ones of the data matrices, to concurrently
reconstruct portions of the lost original data corresponding to
the lost data matrices from respective ones of the surviving
data matrices and the surviving check matrices, and to con-
currently regenerate portions of the lost check data corre-
sponding to the lost check matrices from respective ones of
the surviving data matrices and respective portions of the
reconstructed lost original data.

The processing core may include 16 data registers. Each of
the data registers may include 16 bytes. The parallel multi-
plier may be configured to process the data in units of at least
64 bytes spread over at least four of the data registers at a time.

Consecutive instructions to process each of the units of the
data may access separate ones of the data registers to permit
concurrent execution of the consecutive instructions by the
processing core.

The parallel multiplier may include two lookup tables for
doing concurrent multiplication of 4-bit quantities across 16
byte-sized entries using the PSHUFB (Packed Shuffie Bytes)
instruction.

The parallel multiplier may be further configured to receive
an input operand in four of the data registers, and return with
the input operand intact in the four of the data registers.

20

40

45

50

60

6

According to another exemplary embodiment of the
present invention, a method of accelerated error-correcting
code (ECC) processing on a computing system is provided.
The computing system includes a non-volatile storage
medium (such as a disk drive or flash memory), a processing
core for accessing instructions and data from a main memory,
and a computer program including a plurality of computer
instructions for implementing an erasure coding system. The
method includes: storing the computer program on the stor-
age medium; executing the computer instructions on the pro-
cessing core; arranging original data as a data matrix in the
main memory; arranging first factors as an encoding matrix in
the main memory, the first factors being for encoding the
original data into check data, the check data being arranged as
a check matrix in the main memory; and generating the check
data using a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor. The gen-
erating of the check data includes ordering operations
through the data matrix and the encoding matrix using the
parallel multiplier.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process-
ing cores. The method may further include scheduling the
generating of the check data by: dividing the data matrix into
a plurality of data matrices; dividing the check matrix into a
plurality of check matrices; and assigning corresponding
ones of the data matrices and the check matrices to the pro-
cessing cores to concurrently generate portions of the check
data corresponding to the check matrices from respective
ones of the data matrices.

The method may further include: dividing the data matrix
into a surviving data matrix for holding surviving original
data of the original data, and a lost data matrix corresponding
to lost original data of the original data; arranging second
factors as a solution matrix in the main memory, the second
factors being for decoding the check data into the lost original
data using the surviving original data and the first factors; and
reconstructing the lost original data by ordering operations
through the surviving data matrix, the encoding matrix, the
check matrix, and the solution matrix using the parallel mul-
tiplier.

The reconstructing of the lost original data may include
accessing each entry of the surviving data matrix from the
main memory at most once.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process-
ing cores. The method may further include scheduling the
generating of the check data and the reconstructing of the lost
original data by: dividing the data matrix into a plurality of
data matrices; dividing the surviving data matrix into a plu-
rality of surviving data matrices; dividing the lost data matrix
into a plurality oflost data matrices; dividing the check matrix
into a plurality of check matrices; and assigning correspond-
ing ones of the data matrices, the surviving data matrices, the
lost data matrices, and the check matrices to the processing
cores to concurrently generate portions of the check data
corresponding to the check matrices from respective ones of
the data matrices and to concurrently reconstruct portions of
the lost original data corresponding to the lost data matrices
from respective ones of the surviving data matrices and the
check matrices.

US 9,160,374 B2

7

The method may further include: dividing the check matrix
into a surviving check matrix for holding surviving check
data of the check data, and a lost check matrix corresponding
to lost check data of the check data; and regenerating the lost
check data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data may take place
concurrently with the regenerating of the lost check data.

The reconstructing of the lost original data and the regen-
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

The regenerating of the lost check data may take place
without accessing the reconstructed lost original data from
the main memory.

The processing core may include a plurality of processing
cores. The executing of the computer instructions may
include executing the computer instructions on the process-
ing cores. The method may further include scheduling the
generating of the check data, the reconstructing of the lost
original data, and the regenerating of the lost check data by:
dividing the data matrix into a plurality of data matrices;
dividing the surviving data matrix into a plurality of surviving
data matrices; dividing the lost data matrix into a plurality of
lost data matrices; dividing the check matrix into a plurality of
check matrices; dividing the surviving check matrix into a
plurality of surviving check matrices; dividing the lost check
matrix into a plurality of lost check matrices; and assigning
corresponding ones of the data matrices, the surviving data
matrices, the lost data matrices, the check matrices, the sur-
viving check matrices, and the lost check matrices to the
processing cores to concurrently generate portions of the
check data corresponding to the check matrices from respec-
tive ones of the data matrices, to concurrently reconstruct
portions of the lost original data corresponding to the lost data
matrices from respective ones of the surviving data matrices
and the surviving check matrices, and to concurrently regen-
erate portions of the lost check data corresponding to the lost
check matrices from respective ones of the surviving data
matrices and respective portions of the reconstructed lost
original data.

According to yet another exemplary embodiment of the
present invention, a non-transitory computer-readable stor-
age medium (such as a disk drive, a compact disk (CD), a
digital video disk (DVD), flash memory, a universal serial bus
(USB) drive, etc.) containing a computer program including a
plurality of computer instructions for performing accelerated
error-correcting code (ECC) processing on a computing sys-
tem is provided. The computing system includes a processing
core for accessing instructions and data from a main memory.
The computer instructions are configured to implement an
erasure coding system when executed on the computing sys-
tem by performing the steps of arranging original data as a
data matrix in the main memory; arranging first factors as an
encoding matrix in the main memory, the first factors being
for encoding the original data into check data, the check data
being arranged as a check matrix in the main memory; and
generating the check data using a parallel multiplier for con-
currently multiplying multiple data entries of a matrix by a
single factor. The generating of the check data includes order-
ing operations through the data matrix and the encoding
matrix using the parallel multiplier.

The generating of the check data may include accessing
each entry of the data matrix from the main memory at most
once.

40

45

8

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; and assigning corresponding ones of the data matri-
ces and the check matrices to the processing cores to concur-
rently generate portions of the check data corresponding to
the check matrices from respective ones of the data matrices.

The computer instructions may be further configured to
perform the steps of: dividing the data matrix into a surviving
data matrix for holding surviving original data of the original
data, and a lost data matrix corresponding to lost original data
of the original data; arranging second factors as a solution
matrix in the main memory, the second factors being for
decoding the check data into the lost original data using the
surviving original data and the first factors; and reconstruct-
ing the lost original data by ordering operations through the
surviving data matrix, the encoding matrix, the check matrix,
and the solution matrix using the parallel multiplier.

The computer instructions may be further configured to
perform the steps of: dividing the check matrix into a surviv-
ing check matrix for holding surviving check data of the
check data, and a lost check matrix corresponding to lost
check data of the check data; and regenerating the lost check
data by ordering operations through the surviving data
matrix, the reconstructed lost original data, and the encoding
matrix using the parallel multiplier.

The reconstructing of the lost original data and the regen-
erating of the lost check data may include accessing each
entry of the surviving data matrix from the main memory at
most once.

The processing core may include a plurality of processing
cores. The computer instructions may be further configured to
perform the step of scheduling the generating of the check
data, the reconstructing of the lost original data, and the
regenerating of the lost check data by: dividing the data
matrix into a plurality of data matrices; dividing the surviving
data matrix into a plurality of surviving data matrices; divid-
ing the lost data matrix into a plurality of lost data matrices;
dividing the check matrix into a plurality of check matrices;
dividing the surviving check matrix into a plurality of surviv-
ing check matrices; dividing the lost check matrix into a
plurality of lost check matrices; and assigning corresponding
ones of the data matrices, the surviving data matrices, the lost
data matrices, the check matrices, the surviving check matri-
ces, and the lost check matrices to the processing cores to
concurrently generate portions of the check data correspond-
ing to the check matrices from respective ones of the data
matrices, to concurrently reconstruct portions of the lost
original data corresponding to the lost data matrices from
respective ones of the surviving data matrices and the surviv-
ing check matrices, and to concurrently regenerate portions of
the lost check data corresponding to the lost check matrices
from respective ones of the surviving data matrices and
respective portions of the reconstructed lost original data.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical can
be implemented with accelerated performance significantly
better than any prior art solution.

US 9,160,374 B2

9
BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifica-
tion, illustrate exemplary embodiments of the present inven-
tion and, together with the description, serve to explain
aspects and principles of the present invention.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

FIG. 3 shows an exemplary method for performing a par-
allel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera-
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data reconstruc-
tion according to an embodiment of the present invention.

FIG. 8 illustrates a multi-core architecture system accord-
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

DETAILED DESCRIPTION

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompany-
ing drawings. In the drawings, like reference numerals refer
to like elements throughout.

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding sys-
tems for the storage and retrieval of digital data distributed
across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate drives
(the data drives), one block per data drive.

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed
size, say 8 bits or one byte. An element, such as a byte, forms
the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size
throughout the description that follows, and the term “ele-
ment(s)” and “byte(s)” will be used synonymously.

Conceptually, different stripes can distribute their data
blocks across different combinations of drives, or have dif-
ferent block sizes or numbers of blocks, etc., but for simpli-
fication and ease of description and implementation, the
described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be
positive integers unless otherwise specified. In addition, since
the N=1 case reduces to simple data mirroring (that is, copy-
ing the same data drive multiple times), it will also be
assumed for simplicity that N=2 throughout.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data (check

20

25

40

45

50

10

blocks), and the M check blocks written across M drives (the
check drives) separate from the N data drives, one block per
check drive. These combinations can take place, for example,
when new (or changed) data is written to (or back to) disk.
Accordingly, each of the N+M drives (data drives and check
drives) stores a similar amount of data, namely one block for
each stripe. As the processing of multiple stripes is concep-
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further
assumed for simplification that the data being stored or
retrieved is only one stripe in size unless otherwise indicated.
It will also be assumed that the block size L is sufficiently
large that the data can be consistently divided across each
block to produce subsets of the data that include respective
portions of the blocks (for efficient concurrent processing by
different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention.

Referring to FIG. 1, the stripe 10 can be thought of not only
as the original N data blocks 20 that make up the original data,
but also the corresponding M check blocks 30 generated from
the original data (that is, the stripe 10 represents encoded
data). Each of the N data blocks 20 is composed of L bytes 25
(labeled byte 1, byte 2, . . ., byte L), and each of the M check
blocks 30 is composed of L bytes 35 (labeled similarly). In
addition, check drive 1, byte 1, is a linear combination of data
drive 1, byte 1; data drive 2, byte 1; . . . ; data drive N, byte 1.
Likewise, check drive 1, byte 2, is generated from the same
linear combination formula as check drive 1, byte 1, only
using data drive 1, byte 2; data drive 2, byte 2; . . . ; data drive
N, byte 2. In contrast, check drive 2, byte 1, uses a different
linear combination formula than check drive 1, byte 1, but
applies it to the same data, namely data drive 1, byte 1; data
drive 2, byte 1; . . . ; data drive N, byte 1. In this fashion, each
of the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. C has two sub-matrices, namely original
data D on top and check data Jon bottom. That is,

Dy D2 ... Dy

Dy Dy ... Dy

C—[D}— Dyy Dwz ... Dwi
J Ju Jpo |

Jau J o Jop

Jur Imz o I

where D, =byte j from data drive i and J,=byte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the columns represent corresponding bytes of each of
the drives.

Further, in case of a disk drive failure of one or more disks,
the arithmetic operations are designed in such a fashion that
for any stripe, the original data (and by extension, the check
data) can be reconstructed from any combination of N data
and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler-
ance (regeneration of the original data even ifas many as M of

US 9,160,374 B2

11

the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
of reconstructing any lost original data and regenerating any
lost check data after a disk failure.

For example, for M=1 check drive, a single parity drive can
function as the check drive (i.e., a RAID4 system). Here, the
arithmetic operation is bitwise exclusive OR of each of the N
corresponding data bytes in each data block of the stripe. In
addition, as mentioned earlier, the assignment of parity
blocks from different stripes to the same drive (i.e., RAID4)
or different drives (i.e., RAIDS) is arbitrary, but it does sim-
plify the description and implementation to use a consistent
assignment between stripes, so that will be assumed through-
out. Since M=1 reduces to the case of a single parity drive, it
will further be assumed for simplicity that M=2 throughout.

For such larger values of M, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2 (such
as 2¥) numbers of elements, includes two fundamental opera-
tions: (1) addition (which is just bitwise exclusive OR, as with
the parity drive-only operations for M=1), and (2) multipli-
cation. While Galois field (GF) addition is trivial on standard
processors, GF multiplication is not. Accordingly, a signifi-
cant component of RAID performance for M=2 is speeding
up the performance of GF multiplication, as will be discussed
later. For purposes of description, GF addition will be repre-
sented by the symbol + throughout while GF multiplication
will be represented by the symbol x throughout.

Briefly, in exemplary embodiments of the present inven-
tion, each of the M check drives holds linear combinations
(over GF arithmetic) of the N data drives of original data, one
linear combination (i.e., a GF sum of N terms, where each
term represents a byte of original data times a corresponding
factor (using GF multiplication) for the respective data drive)
for each check drive, as applied to respective bytes in each
block. One such linear combination can be a simple parity,
i.e., entirely GF addition (all factors equal 1), such as a GF
sum ofthe first byte in each block of original data as described
above.

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multipli-
cation operations (e.g., performing a GF multiplication of the
first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre-
sented by an (N+M)xN matrix (encoding matrix or informa-
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each ofthe N+M data and check drives
and one column for each of the N data drives. The IDM E can
also be represented as

[a}

where I, represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MxN matrix of fac-
tors for the check drives (where each of the M rows corre-
sponds to one of the M check drives and each of the N
columns corresponds to one of the N data drives).

10

15

20

25

30

35

40

45

50

55

60

65

Thus,
o ... 0
0 1 0
£ [IN} 0 0 1
“lH Hy Hp ... Hy |
Hy Hyp ... How
Hyy Huz ... Hun

where H,=factor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the columns
represent corresponding bytes of each of the drives. In addi-
tion, check factors H, original data D, and check data J are
related by the formula J=HxD (that is, matrix multiplication),
or

Ju o Ji2o Ji

Jo J o Jap

Imr Imz o e
Hy Hpp Hyy Dy D2 ... Dy
Hy Hp Hyy 9 Dy Dy ... Dy
Hyy Huz ... Huy Dy Dy2 ... Dnp

where J, =(H, ,xD; +H,xD,)+ . . . +W xDy), J15=
(Hy 1 XD o)+ HipxDoo)+ oo +WiaxDay), T =(H, xDy)+
(Hy5xDy)+ - - - +#(Hyn %Dy,), and in general, J, =(H,, xD,)+
(H; X Do)+ . .. +#(H,xDyy) for 1=i=M and 1<j<L.

Such an encoding matrix E is also referred to as an infor-
mation dispersal matrix (IDM). It should be noted that matri-
ces such as check drive encoding matrix H and identity matrix
1+ also represent encoding matrices, in that they represent
matrices of factors to produce linear combinations over GF
arithmetic of the original data. In practice, the identity matrix
1+ 1s trivial and may not need to be constructed as part of the
IDM E. Only the encoding matrix E, however, will be referred
to as the IDM. Methods of building an encoding matrix such
as IDM E or check drive encoding matrix H are discussed
below. In further embodiments of the present invention (as
discussed further in Appendix A), such (N+M)xN (or MxN)
matrices can be trivially constructed (or simply indexed) from
a master encoding matrix S, which is composed of (N
M,)XN,,.. (or M,,..xN,,) bytes or elements, where
N,.uxtM,,,.,=256 (or some other power of two) and N=sN =
and M=M,, ... For example, one such master encoding matrix
S can include a 127x127 element identity matrix on top (for
uptoN,,, =127 data drives), a row of 1’s (for a parity drive),
and a 128x127 element encoding matrix on bottom (for up to
M,,..=129 checkdrives, including the parity drive), for a total
of N, +M,,.,.=256 drives.

The original data, in turn, can be represented by an NxL
matrix D of bytes, each of the N rows representing the L bytes
of'a block of the corresponding one of the N data drives. IfC
represents the corresponding (N+M)xL matrix of encoded
bytes (Where each of'the N+M rows corresponds to one of the
N+M data and check drives), then C can be represented as

max+

US 9,160,374 B2

13
s3]

where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L. check bytes of the correspond-
ing one of the M check drives. It should be noted that in the
relationships such as C=ExD or J=HxD, x represents matrix
multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the (N+1)*
row of the IDM E) can be all 1°s, representing the parity drive.
For linear combinations involving this row, the GF multipli-
cation can be bypassed and replaced with a GF sum of the
corresponding bytes since the products are all trivial products
involving the identity element 1. Accordingly, in parity drive
implementations, the check drive encoding matrix H can also
be thought of as an (M-1)xN matrix of non-trivial factors
(that is, factors intended to be used in GF multiplication and
not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back to)
disk. The other significant event for RAID processing is when
one or more of the drives fail (data or check drives), or for
whatever reason become unavailable. Assume that in such a
failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=0, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the
original data D.

Accordingly, assume at least one data drive fails, that is,
F=1, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and Y represent the lost
original data. That is, X is a Kx[L matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, while Y is an FxL matrix composed of
the F rows of the original data matrix D corresponding to the
F failed data drives.

Iy xD

ExD:[
HxD

thus represents a permuted original data matrix D' (that is, the
original data matrix D, only with the surviving original data X
on top and the lost original data Y on bottom. It should be
noted that once the lost original data 'Y is reconstructed, it can
be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated.

It should also be noted that M—G check drives survive. In
order to reconstruct the lost original data Y, enough (that is, at
least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it follows
that (N-F)+(M-G)=N must be true to reconstruct the lost
original data Y. This is equivalent to F+G=M (i.e., no more
than F+G drives fail), or F<M -G (that is, the number of failed
data drives does not exceed the number of surviving check
drives). It will therefore be assumed for simplicity that F<M-
G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and check

40

45

55

65

14

drives (that is, four separate lists). This allows processing of
the different sets of surviving and failed drives to be done
more efficiently than existing solutions, which use, for
example, bit vectors that have to be examined one bit at a time
and often include large numbers of consecutive zeros (or
ones) when ones (or zeros) are the bit values of interest.

FIG. 2 shows an exemplary method 300 for reconstructing
lost data after a failure of one or more drives according to an
embodiment of the present invention.

While the recovery process is described in more detail
later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an NxN reduced encoding matrix T (also referred to as the
transformed IDM) including the K surviving data drive rows
and any F of the M-G surviving check drive rows (for
instance, the first F surviving check drive rows, as these will
include the parity drive if it survived; recall that F<M-G was
assumed). In addition, the columns of the reduced encoding
matrix Tare rearranged so that the K columns corresponding
to the K surviving data drives are on the left side of the matrix
and the F columns corresponding to the F failed drives are on
the right side of the matrix. (Step 320) These F surviving
check drives selected to rebuild the lost original data Y will
henceforth be referred to as “the F surviving check drives,”
and their check data W will be referred to as “the surviving
check data,” even though M-G check drives survived. It
should be noted that W is an Fx[L matrix composed of the F
rows of the check data J corresponding to the F surviving
check drives. Further, the surviving encoded data can be
represented as a sub-matrix C' of the encoded data C. The
surviving encoded data C' is an NxL matrix composed of the
surviving original data X on top and the surviving check data
Won bottom, that is,

i)

2. (Step 330) Splitting the reduced encoding matrix T into
four sub-matrices (that are also encoding matrices): (i) a KxK
identity matrix I, (corresponding to the K surviving data
drives) in the upper left, (ii) a KxF matrix O of zeros in the
upper right, (iii) an FxK encoding matrix A in the lower left
corresponding to the F surviving check drive rows and the K
surviving data drive columns, and (iv) an FxF encoding
matrix B in the lower right corresponding to the F surviving
check drive rows and the F failed data drive columns. Thus,
the reduced encoding matrix T can be represented as

[+ 5}

3. (Step 340) Calculating the inverse B~ of the FxF encod-
ing matrix B. As is shown in more detail in Appendix A,
C'=TxD', or

MEEM!

US 9,160,374 B2

15

which is mathematically equivalent to W=AxX+BxY. B! is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B~ thus allows the lost origi-
nal data’Y to be reconstructed from the encoding matrices A
and B along with the surviving original data X and the sur-
viving check data W.

The FxK encoding matrix A represents the original encod-
ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of A
represents a different one of the F surviving check drives,
while each of the K columns of A represents a different one of
the K surviving data drives. Thus, A provides the encoding
factors needed to encode the original data for the surviving
check drives, but only applied to the surviving data drives
(that is, the surviving partial check data). Since the surviving
original data X is available, A can be used to generate this
surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F surviving
check drives and the F failed data drives. That is, the F rows of
B correspond to the same F rows of A, while each of the F
columns of B represents a different one of the F failed data
drives. Thus, B provides the encoding factors needed to
encode the original data for the surviving check drives, but
only applied to the failed data drives (that is, the lost partial
check data). Since the lost original data'Y is not available, B
cannot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from
A and the surviving check data W. Since this lost partial check
data represents the result of applying B to the lost original
data’Y, B~ thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually be
constructed. Appropriate indexing of the IDM E (or the mas-
ter encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF arith-
metic and takes O(F) operations, as discussed in more detail
later. Nonetheless, this is a significant improvement over
existing solutions, which require O(N>) operations, since the
number of failed data drives F is usually significantly less than
the number of data drives N in any practical situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B~! are known, reconstructing the lost data
from the surviving data (that is, the surviving original data X
and the surviving check data W) can be accomplished in four
steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data (i.e.,
AxX), only limited to the K surviving data drives. Call this
limited check data the surviving partial check data.

2. Subtract this surviving partial check data from the sur-
viving check data W (using matrix subtraction, i.e., W-AxX,
which is just entry-by-entry GF subtraction, which is the
same as GF addition for this Galois field). This generates the
surviving check data, only this time limited to the F failed data
drives. Call this limited check data the lost partial check data.

3. Use the solution matrix B~ and the lost partial check
data (using matrix multiplication, i.e., B™'x(W-AxX) to
reconstruct the lost original data Y. Call this the recovered
original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives along
with the original data D, as reconstructed from the surviving
and recovered original data X and Y, to regenerate the lost
check data (using matrix multiplication).

40

45

55

16

As will be shown in more detail later, steps 1-3 together
require O(F) operations times the amount of original data D to
reconstruct the lost original data’Y for the F failed data drives
(i.e., roughly 1 operation per failed data drive per byte of
original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed
to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G failed
check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In summary, the number of
operations needed to reconstruct the lost data is O(F+G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since
F+G=M, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the surviving
data) is no more than that of generating the check data J from
the original data D.

As mentioned above, for exemplary purposes and ease of
description, data is assumed to be organized in 8-bit bytes,
each byte capable of taking on 25=256 possible values. Such
data can be manipulated in byte-size elements using GF arith-
metic for a Galois field of size 28=256 elements. It should also
be noted that the same mathematical principles apply to any
power-of-two Z number of elements, not just 256, as Galois
fields can be constructed for any integral power of a prime
number. Since Galois fields are finite, and since GF opera-
tions never overflow, all results are the same size as the inputs,
for example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It can
also be performed on multiple bytes concurrently. Since the
addition and subtraction operations take place, for example,
on abyte-level basis, they can be done in parallel by using, for
instance, x86 architecture Streaming SIMD Extensions
(SSE) instructions (SIMD stands for single instruction, mul-
tiple data, and refers to performing the same instruction on
different pieces of data, possibly concurrently), such as
PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte regis-
ters (XMM registers), and are able to process such registers as
though they contain 16 separate one-byte operands (or 8
separate two-byte operands, or four separate four-byte oper-
ands, etc.) Accordingly, SSE instructions can do byte-level
processing 16 times faster than when compared to processing
a byte at a time. Further, there are 16 XMM registers, so
dedicating four such registers for operand storage allows the
data to be processed in 64-byte increments, using the other 12
registers for temporary storage. That is, individual operations
can be performed as four consecutive SSE operations on the
four respective registers (64 bytes), which can often allow
such instructions to be efficiently pipelined and/or concur-
rently executed by the processor. In addition, the SSE instruc-
tions allows the same processing to be performed on different
such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a
single core.

For example, a parallel adder (Parallel Adder) can be built
using the 16-byte XMM registers and four consecutive PXOR
instructions. Such parallel processing (that is, 64 bytes at a
time with only a few machine-level instructions) for GF arith-
metic is a significant improvement over doing the addition

US 9,160,374 B2

17

one byte at a time. Since the data is organized in blocks of any
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4
KB) or 32,768 bytes (32 KB), a block can be composed of
numerous such 64-byte chunks (e.g., 64 separate 64-byte
chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR’s (i.e.,
“additions”) that are very fast operations, the numbers “wrap”
in peculiar ways when they are shifted outside of their normal
bounds (because the field has only a finite set of elements),
which can slow down the calculations. This “wrapping” in the
GF multiplication can be addressed in many ways. For
example, the multiplication can be implemented serially (Se-
rial Multiplier) as a loop iterating over the bits of one operand
while performing the shifts, adds, and wraps on the other
operand. Such processing, however, takes several machine
instructions per bit for 8 separate bits. In other words, this
technique requires dozens of machine instructions per byte
being multiplied. This is inefficient compared to, for example,
the performance of the Parallel Adder described above.

For another approach (Serial Lookup Multiplier), multipli-
cation tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, atable 0f 256x256=65,536 bytes can hold
all the possible products of the two different one-byte oper-
ands). However, such tables can force serialized access on
what are only byte-level operations, and not take advantage of
wide (concurrent) data paths available on modern processors,
such as those used to implement the Parallel Adder above.

In still another approach (Parallel Multiplier), the GF mul-
tiplication can be done on multiple bytes at a time, since the
same factor in the encoding matrix is multiplied with every
element in a data block. Thus, the same factor can be multi-
plied with 64 consecutive data block bytes at a time. This is
similar to the Parallel Adder described above, only there are
several more operations needed to perform the operation.
While this can be implemented as a loop on each bit of the
factor, as described above, only performing the shifts, adds,
and wraps on 64 bytes at a time, it can be more efficient to
process the 256 possible factors as a (C language) switch
statement, with inline code for each of 256 different combi-
nations of two primitive GF operations: Multiply-by-2 and
Add. For example, GF multiplication by the factor 3 can be
effected by first doing a Multiply-by-2 followed by an Add.
Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a
Multiply-by-2 followed by an Add and then by another Mul-
tiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple-
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu-
tive PADDB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes
of data at a time being multiplied by 2.

For 64 bytes of data, assuming a random factor between 0
and 255, the total overhead for the Parallel Multiplier is about
6 calls to multiply-by-2 and about 3.5 calls to add, or about
6x20+3.5x4=134 machine instructions, or a little over 2
machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table

40

45

60

18
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi-
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are built
once: one lookup table for the low-order nibbles in each byte,
and one lookup table for the high-order nibbles in each byte.
Each lookup table contains 256 sets (one for each possible
factor) of'the 16 possible GF products ofthat factor and the 16
possible nibble values. FEach lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica-
tion table. In addition, PSHUFB does 16 separate table look-
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is initial-
ized for the next set of 64 bytes of operand data (such as
original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi-
plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).

Next in step 430, to process these 64 bytes of operand data,
the Parallel Lookup Multiplier can be implemented with 2
MOVDQA (Move Double Quadword Aligned) instructions
(from memory) to do the two table lookups and 4 MOVDQA
instructions (register to register) to initialize registers (such as
the output registers). These are followed in steps 440 and 450
by two nearly identical sets of 17 register-to-register instruc-
tions to carry out the multiplication 32 bytes at a time. Each
such set starts (in step 440) with 5 more MOVDQA instruc-
tions for further initialization, followed by 2 PSRLW (Packed
Shift Right Logical Word) instructions to realign the high-
order nibbles for PSHUFB, and 4 PAND instructions to clear
the high-order nibbles for PSHUFB. That is, two registers of
byte operands are converted into four registers of nibble oper-
ands. Then, in step 450, 4 PSHUFB instructions are used to do
the parallel table lookups, and 2 PXOR instructions to add the
results of the multiplication on the two nibbles to the output
registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64 sepa-
rate bytes, which is considerably better than the average 134
instructions for the Parallel Multiplier above, and only 10
times as many instructions as needed for the Parallel Adder.
While some of the Parallel Lookup Multiplier’s instructions
are more complex than those of the Parallel Adder, much of
this complexity can be concealed through the pipelined and/
or concurrent execution of numerous such contiguous
instructions (accessing different registers) on modern pipe-
lined processors. For example, in exemplary implementa-
tions, the Parallel Lookup Multiplier has been timed at about
15 CPU clock cycles per 64 bytes processed per CPU core
(about 0.36 clock cycles per instruction). In addition, the code
footprint is practically nonexistent for the Parallel Lookup
Multiplier (40 instructions) compared to that of the Parallel
Multiplier (about 34,300 instructions), even when factoring
the 8 KB needed for the two lookup tables in the Parallel
Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi-
plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four

US 9,160,374 B2

19

consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same 40
machine instructions) such that the Parallel Lookup Multi-
plier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data.
Through such a protocol, memory accesses can be minimized
(or significantly reduced) for accessing the original data D
during check data generation or the surviving original data X
during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other
GF) operations. While the Parallel Lookup Multiplier pro-
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mul-
tiplier should be appropriately sequenced to provide efficient
processing. One such sequencer (Sequencer 1), for example,
can generate the check data J from the original data D, and is
described further with respect to FIG. 4.

The parity drive does not need GF multiplication. The
check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder can
do this using 4 instructions for every 64 bytes of data for each
of the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro-
priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

1) “column-by-column,” i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc., and
adding the products to the running total in memory (us-
ing the Parallel Adder) before moving onto the next row
(data drive); and

2) “row-by-row,” i.e., 64 bytes for one data drive, followed
by the corresponding 64 bytes for the next data drive,
etc., and keeping a running total using the Parallel
Adder, then moving onto the next set of 64-byte chunks.

Column-by-column can be thought of as “constant factor,
varying data,” in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as “constant data, varying factor,” in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M~1 non-parity check drives, or
SN(M-1)/8 instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to
each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 4 shows an exemplary method 500 for sequencing the
Parallel Lookup Multiplier to perform the check data genera-
tion according to an embodiment of the present invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each ofthe blocks across a stripe of data. For instance,
Sequencer 1 could be called to process 512 bytes from each
block. If, for example, the block size L is 4096 bytes, then it
would take eight such calls to Sequencer 1 to process the
entire stripe. The other such seven calls to Sequencer 1 could
be to different processing cores, for instance, to carry out the
check data generation in parallel. The number of 64-byte
chunks to process at a time could depend on factors such as
cache dimensions, input/output data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive’s 64-byte chunk of data
from memory, the data is loaded only once and preserved
across calls to the Parallel Lookup Multiplier. The first data
drive is handled specially since the check data has to be
initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive’s
data. In addition to the first data drive, the first check drive is
also handled specially since it is a parity drive, so its check
data can be initialized to the first data drive’s data directly
without needing the Parallel Lookup Multiplier.

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data
drive’s data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with
each of the first data drive’s data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity
check drive.

In step 540, the second middle loop is called, which pro-
cesses the other data drives’ corresponding 64-byte chunks of
data. As with the first data drive, each of the other data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier). In addition, since the first check drive is
the parity drive, its check data can be updated by directly
adding these 64 bytes to it (using the Parallel Adder) before
handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied
with each of the next data drive’s data bytes using the Parallel
Lookup Multiplier, and the results added to the check drive’s
check data.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using Algo-
rithm 2). While the same column-by-column and row-by-row
data access approaches are possible, as well as the same
choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate
steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For
example, step 1 (surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of surviving
original data accesses from memory.

Empirical results show that method (2)(b)(ii), that is, row-
by-row data access on all of the check drives and for both
surviving check data generation and lost check data regen-
eration between data accesses performs best with the Parallel

US 9,160,374 B2

21

Lookup Multiplier when reconstructing lost data using Algo-
rithm 2. Again, this may be due to the apparent minimization
of the number of memory accesses (namely, one) of each
chunk of surviving original data X to reconstruct the lost data
and the absence of memory accesses of reconstructed lost
original data Y when regenerating the lost check data. This
embodiment of Sequencer 1 is described in more detail with
reference to FIGS. 5-7.

FIGS. 5-7 show an exemplary method 600 for sequencing
the Parallel Lookup Multiplier to perform the lost data recon-
struction according to an embodiment of the present inven-
tion.

Referring to FIG. 5, in step 610, the Sequencer 2 is called.
Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to be
reconstructed. In addition, lost check data needs to be regen-
erated. Like Sequencer 1, Sequencer 2 does these operations
in such a way as to minimize memory accesses of the data
drive data (by loading the data once and calling the Parallel
Lookup Multiplier multiple times). Assume for ease of
description that there is at least one surviving data drive; the
case of no surviving data drives is handled a little differently,
but not significantly different. In addition, recall from above
that the driving formula behind data reconstruction is
Y=B~!x(W-AxX), whereY is the lost original data, B~ is the
solution matrix, W is the surviving check data, A is the partial
check data encoding matrix (for the surviving check drives
and the surviving data drives), and X is the surviving original
data.

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the first
surviving data drive is again handled specially since the par-
tial check data AxX has to be initialized for each surviving
check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving check
drive based on the first surviving data drive’s 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the first surviving data drive.

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive. Using
the same 64 bytes of the first surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 630), the
Parallel Lookup Multiplier is again called, this time to initial-
ize each of the failed check drive’s check data to the corre-
sponding component from the first surviving data drive. This
completes the computations involving the first surviving data
drive’s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 630 and 640.

Continuing with FIG. 6, in step 650, the third middle loop
is called, which processes the other surviving data drives’
corresponding 64-byte chunks of data. As with the first sur-
viving data drive, each of the other surviving data drives is
processed separately, loading the respective 64 bytes of data
into four registers (preserved across calls to the Parallel
Lookup Multiplier).

In step 660, the first inner loop is called, in which the partial
check data AxX is updated for each surviving check drive
based on the next surviving data drive’s 64 bytes of data. In
this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the next surviving data drive.

10

15

20

25

30

35

40

45

50

55

60

65

22

In step 670, the second inner loop is called, in which the
lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660), the
Parallel Lookup Multiplier is again called, this time to update
each of the failed check drive’s check data by the correspond-
ing component from the next surviving data drive. This com-
pletes the computations involving the next surviving data
drive’s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 660 and 670.

Next, in step 680, the computation of the partial check data
AxX is complete, so the surviving check data W is added to
this result (recall that W-AxX is equivalent to W+AxX in
binary Galois Field arithmetic). This is done by the fourth
middle loop, which for each surviving check drive adds the
corresponding 64-byte component of surviving check data W
to the (surviving) partial check data AxX (using the Parallel
Adder) to produce the (lost) partial check data W-AxX.

Continuing with FIG. 7, in step 690, the fifth middle loop is
called, which performs the two dimensional matrix multipli-
cation B~'x(W-AxX) to produce the lost original dataY. The
calculation is performed one row at a time, for a total of F
rows, initializing the row to the first term of the corresponding
linear combination of the solution matrix B~ and the lost
partial check data W-AxX (using the Parallel Lookup Mul-
tiplier).

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear combi-
nation (using the Parallel Lookup Multiplier on each term)
from the fitth middle loop in step 690 and updates the running
calculation (using the Parallel Adder) of the next row of
B~!x(W-AxX). This completes the next row (and recon-
structs the corresponding failed data drive’s lost data) of lost
original data Y, which can then be stored at an appropriate
location.

In step 710, the fourth inner loop is called, in which the lost
check data is updated for each failed check drive by the newly
reconstructed lost data for the next failed data drive. Using the
same 64 bytes of the next reconstructed lost data (preserved
across calls to the Parallel Lookup Multiplier), the Parallel
Lookup Multiplier is called to update each of the failed check
drives’ check data by the corresponding component from the
next failed data drive. This completes the computations
involving the next failed data drive’s 64 bytes of recon-
structed data, which were performed as soon as the data was
reconstructed and without being stored and retrieved from
main memory.

Finally, in step 720, the sixth middle loop is called. The lost
check data has been regenerated, so in this step, the newly
regenerated check data is stored at an appropriate location (if
desired).

Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 2'°=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details will
be omitted for brevity of description.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID error
correcting codes are described in Appendix A, which contains
a paper “Information Dispersal Matrices for RAID Error
Correcting Codes” prepared for the present application.
Multi-Core Considerations

What follows is an exemplary embodiment for optimizing
or improving the performance of multi-core architecture sys-

US 9,160,374 B2

23

tems when implementing the described erasure coding sys-
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their
own local caches, together with a memory (bus) interface and
possible on-die cache to interface with a shared memory with
other processor dies.

FIG. 8 illustrates a multi-core architecture system 100 hav-
ing two processor dies 110 (namely, Die 0 and Die 1).

Referring to FIG. 8, each die 110 includes four central
processing units (CPUs or cores) 120 each having a local level
1 (LL1) cache. Each core 120 may have separate functional
units, for example, an x86 execution unit (for traditional
instructions) and a SSE execution unit (for software designed
for the newer SSE instruction set). An example application of
these function units is that the x86 execution unit can be used
for the RAID control logic software while the SSE execution
unit can be used for the GF operation software. Each die 110
alsohas a level 2 (L.2) cache/memory bus interface 130 shared
between the four cores 120. Main memory 140, in turn, is
shared between the two dies 110, and is connected to the
input/output (I/O) controllers 150 that access external devices
such as disk drives or other non-volatile storage devices via
interfaces such as Peripheral Component Interconnect (PCI).

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to vali-
date and schedule a host request (for example, to load or store
data from disk storage); (2) Command Translation and Sub-
mission, to translate the host request into multiple disk
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to
requestor buffers. Note that the final state, Request Comple-
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example,
some of the cores 120 can be “command cores,” that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be “data cores,” and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into
corresponding portions of each block, which can then be
processed independently by different cores 120 for applica-
tions such as check data generation and lost data reconstruc-
tion.

One of the benefits of this data core/command core subdi-
vision of processing is ensuring that different code will be
executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated .1 cache in each core 120,
and avoids the “pollution” of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the /O operations. This
helps localize the Parallel Lookup Multiplier code and asso-
ciated data to a single core 120 and not compete with other

20

40

45

24

cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to achieve
the result. This combination can be achieved by utilizing the
mathematical techniques and code optimizations described
elsewhere in this application with careful placement of the
resulting code on specific processing cores. Embodiments
can also be implemented on fewer resources, such as single-
core dies and/or single-die systems, with decreased parallel-
ism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into “threads,” and
threads may be assigned to specific CPUs and memory sys-
tems via the kthread_bind function when the thread is created.
Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per-
formance of the system.

Further, creating multiple threads for command processing
allows for fully overlapped execution of the command pro-
cessing states. One way to accomplish this is to number each
command, then use the arithmetic MOD function (% in C
language) to choose a separate thread for each command.
Another technique is to subdivide the data processing portion
of'each command into multiple components, and assign each
component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are divided
into three types: data drives 210, parity drive 220, and check
drives 230. The eight disks break down as three data drives
210, one parity drive 220, and four check drives 230 in the
embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of data.
The data is distributed uniformly across the data drives 210 in
stripes, such as 192 KB stripes. For example, the data for an
application can be broken up into stripes of 192 KB, and each
of'the stripes in turn broken up into three 64 KB blocks, each
of'the three blocks being written to a different one of the three
data drives 210.

The parity drive 220 is a special type of check drive in that
the encoding of its data is a simple summation (recall that this
is exclusive OR in binary GF arithmetic) of the corresponding
bytes of each of the three data drives 210. That is, check data
generation (Sequencer 1) or regeneration (Sequencer 2) can
be performed for the parity drive 220 using the Parallel Adder
(and not the Parallel Lookup Multiplier). Accordingly, the
check data for the parity drive 220 is relatively straightfor-
ward to build. Likewise, when one of the data drives 210 no
longer functions correctly, the parity drive 220 can be used to
reconstruct the lost data by adding (same as subtracting in
binary GF arithmetic) the corresponding bytes from each of
the two remaining data drives 210. Thus, a single drive failure
of'one of the data drives 210 is very straightforward to handle
when the parity drive 220 is available (no Parallel Lookup
Multiplier). Accordingly, the parity drive 220 can replace
much of the GF multiplication operations with GF addition
for both check data generation and lost data reconstruction.

Each of the check drives 230 contains a linear combination
of'the corresponding bytes of each of the data drives 210. The
linear combination is different for each check drive 230, but in

US 9,160,374 B2

25

general is represented by a summation of different multiples
of each of the corresponding bytes of the data drives 210
(again, all arithmetic being GF arithmetic). For example, for
the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the
second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each
of'the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230.
The specifics of which multiples for which check drive are
explained in Appendix A.

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 9.
Accordingly, each 192 KB of original data is stored as 512 KB
(i.e., eight blocks of 64 KB) of (original plus check) data.
Such a system 200, however, is capable of recovering all of
the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the
original data.

Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary
embodiment of the present invention may be written in soft-
ware as, for example, four functions, which could be named
as ECClnitialize, ECCSolve, ECCGenerate, and ECCRegen-
erate. The main functions that perform work are ECCGener-
ate and ECCRegenerate. ECCGenerate generates check
codes for data that are used to recover data when a drive
suffers an outage (that is, ECCGenerate generates the check
data J from the original data D using Sequencer 1). ECCRe-
generate uses these check codes and the remaining data to
recover data after such an outage (that is, ECCRegenerate
uses the surviving check data W, the surviving original data X,
and Sequencer 2 to reconstruct the lost original data’Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B! together with the lists of sur-
viving and failed data and check drives). Prior to calling
ECCSolve, ECClnitialize is called to generate constant tables
used by all of the other functions (for example, ECClnitialize
builds the IDM E and the two lookup tables for the Parallel
Lookup Multiplier).

ECClnitialize

The function ECClnitialize creates constant tables that are
used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values
up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such
as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvet—an array of constants used to perform GF multi-
plication with the PSHUFB instruction that operates on SSE
registers (that is, the Parallel Lookup Multiplier).

2. mast—contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the
check drive encoding matrix H

3. mul_tab—contains the results of all possible GF multi-
plication operations of any two operands (for example, 256x
256=65,536 bytes for all of the possible products of two
different one-byte quantities)

4. div_tab—contains the results of all possible GF division
operations of any two operands (can be similar in size to
mul_tab)

10

15

20

25

30

35

40

45

50

55

60

65

26

ECCSolve

The function ECCSolve creates constant tables that are
used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior to
using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B~ (i.e., the solution
matrix).

ECCGenerate

The function ECCGenerate is used to generate check codes
(that is, the check data matrix J) for a particular configuration
of data drives and check drives, using Sequencer 1 and the
Parallel Lookup Multiplier as described above. Prior to call-
ing ECCGenerate, ECCSolve is called to compute the appro-
priate constants for the particular configuration of data drives
and check drives, as well as the solution matrix B™".

ECCRegenerate

The function ECCRegenerate is used to regenerate data
vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the lost
check data from the restored original data), this time using
Sequencer 2 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCRegenerate, ECCSolve is called
to compute the appropriate constants for the particular con-
figuration of data drives, check drives, and failed drives, as
well as the solution matrix B~
Exemplary Implementation Details

As discussed in Appendix A, there are two significant
sources of computational overhead in erasure code process-
ing (such as an erasure coding system used in RAID process-
ing): the computation of the solution matrix B~ for a given
failure scenario, and the byte-level processing of encoding the
check data J and reconstructing the lost data after a lost packet
(e.g., data drive failure). By reducing the solution matrix B!
to a matrix inversion of a FxF matrix, where F is the number
of lost packets (e.g., failed drives), that portion of the com-
putational overhead is for all intents and purposes negligible
compared to the megabytes (MB), gigabytes (GB), and pos-
sibly terabytes (TB) of data that needs to be encoded into
check data or reconstructed from the surviving original and
check data. Accordingly, the remainder of this section will be
devoted to the byte-level encoding and regenerating process-
ing.

As already mentioned, certain practical simplifications can
be assumed for most implementations. By using a Galois field
of'256 entries, byte-level processing can be used for all of the
GF arithmetic. Using the master encoding matrix S described
in Appendix A, any combination of up to 127 data drives, 1
parity drive, and 128 check drives can be supported with such
a Galois field. While, in general, any combination of data
drives and check drives that adds up to 256 total drives is
possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S, on
the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
such matrix. That is, the appropriate sub-matrix (including
the parity drive) can be used for configurations of less than the
maximum number of drives.

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other pro-

US 9,160,374 B2

27

posed solutions, which recompute E for every change of N or
M). Rather, additional indexing of rows and/or columns of the
master encoding matrix S will suffice. As discussed above,
the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations
associated with the other check drives and replaces them with
simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power-
of-two number of drives 2°=N,,_ +M,, where the maximum
number of data drives N, is one less than a power of two
(e.g., N,,..=127 or 63) and the maximum number of check
drives M, (including the parity drive) is 2°-N .

As discussed earlier, in an exemplary embodiment of the
present invention, a modern x86 architecture is used (being
readily available and inexpensive). In particular, this archi-
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these
XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain-
ing 16 one-byte operands), 64 bytes of data can be operated at
a time using four consecutive SSE instructions (e.g., fetching
from memory, storing into memory, zeroing, adding, multi-
plying), the remaining registers being used for intermediate
results and temporary storage. With such an architecture,
several routines are useful for optimizing the byte-level per-
formance, including the Parallel Lookup Multiplier,
Sequencer 1, and Sequencer 2 discussed above.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

Glossary of Some Variables

A encoding matrix (FxK), sub-matrix of T
B encoding matrix (FxF), sub-matrix of T
B~! solution matrix (FxF)

C encoded data matrix
D
(N +M)xL)= [}
J
C' surviving encoded data matrix

X
(NxL)_[W}

D original data matrix (NxL)

D' permuted original data matrix

X
(NxL)_[Y}

10

15

20

25

30

35

40

45

50

55

60

65

28

E information dispersal matrix

In
(IDM)((N + M)X N) = [. }

F number of failed data drives

G number of failed check drives

H check drive encoding matrix (MxN)

1 identity matrix (I,=KxK identity matrix, [,=NxN identity
matrix)

J encoded check data matrix (MxL)

K number of surviving data drives=N-F

L data block size (elements or bytes)

M number of check drives

M,,, . maximum value of M

N number of data drives

N, maximum value of N

O zero matrix (KxF), sub-matrix of T

S master encoding matrix (M,,,,+N .0 XN,

T transformed IDM

ma.x)

Ik O
(NxN)_[A B}

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

What is claimed is:

1. A system for accelerated error-correcting code (ECC)
processing comprising:

a processing core for executing computer instructions and
accessing data from a main memory, the processing core
comprising at least 16 data registers, each of the data
registers comprising at least 16 bytes; and

a non-volatile storage medium for storing the computer
instructions,

wherein the processing core, the non-volatile storage
medium, and the computer instructions are configured to
implement an erasure coding system comprising:

a data matrix for holding original data in the main
memory;

a check matrix for holding check data in the main
memory;

an encoding matrix for holding first factors in the main
memory, the first factors being for encoding the origi-
nal data into the check data; and

a thread for executing on the processing core and com-
prising:

a parallel multiplier for concurrently multiplying
multiple data entries of a matrix by a single factor;
and

a first sequencer for ordering operations through the
data matrix and the encoding matrix using the par-
allel multiplier to generate the check data.

2. The system of claim 1, wherein the parallel multiplier is
configured to process the data in units of at least 64 bytes
spread over at least four of the data registers at a time.

3. The system of claim 2, wherein the parallel multiplier is
further configured to:

receive an input operand in the at least four of the data
registers; and

return with the input operand intact in the at least four of the
data registers.

4. The system of claim 2, wherein consecutive ones of the

computer instructions to process each of the units of the data

US 9,160,374 B2

29

access separate ones of the data registers to permit concurrent
execution of the consecutive ones of the computer instruc-
tions on the processing core.

5. The system of claim 1, wherein the parallel multiplier
comprises two lookup tables for doing concurrent multipli-
cation of 4-bit quantities across 16 byte-sized entries using
the PSHUFB (Packed Shuffle Bytes) or equivalent instruc-
tion.

6. The system of claim 1, wherein the parallel multiplier is
further configured to:

receive an input operand in at least one of the data registers;

and

return with the input operand intact in the at least one of the

data registers.

7. A method of accelerated error-correcting code (ECC)
processing on a computing system comprising a non-volatile
storage medium, a processing core for accessing instructions
and data from a main memory, and a computer program
comprising a plurality of computer instructions for imple-
menting an erasure coding system, the processing core com-
prising at least 16 data registers, each of the data registers
comprising at least 16 bytes, the method comprising:

storing the computer program on the non-volatile storage

medium;

executing the computer instructions on the processing
core;

arranging original data as a data matrix in the main
memory;

arranging first factors as an encoding matrix in the main
memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for

concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

8. The method of claim 7, wherein the generating of the
check data further comprises processing the data by the par-
allel multiplier in units of at least 64 bytes spread over at least
four of the data registers at a time.

9. The method of claim 8, wherein the generating of the
check data further comprises:

receiving by the parallel multiplier an input operand in the

at least four of the data registers; and

returning by the parallel multiplier the input operand intact

in the at least four of the data registers.

10. The method of claim 8, wherein

consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers,

the executing of the computer instructions on the process-

ing core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core.

11. The method of claim 7, wherein the parallel multiplier
comprises two lookup tables and the generating of the check
data further comprises using the parallel multiplier with the
two lookup tables to do concurrent multiplication of 4-bit

10

15

20

25

30

35

40

45

50

55

30

quantities across 16 byte-sized entries using the PSHUFB
(Packed Shuffle Bytes) or equivalent instruction.

12. The method of claim 7, wherein the generating of the
check data further comprises:

receiving by the parallel multiplier an input operand in at

least one of the data registers; and

returning by the parallel multiplier the input operand intact

in the at least one of the data registers.

13. A non-transitory computer-readable storage medium
containing a computer program comprising a plurality of
computer instructions for performing accelerated error-cor-
recting code (ECC) processing on a computing system com-
prising a processing core for accessing instructions and data
from a main memory, the processing core comprising at least
16data registers, each of the data registers comprising at least
16 bytes, the computer instructions being configured to
implement an erasure coding system when executed on the
computing system by performing the steps of:

arranging original data as a data matrix in the main

memory;

arranging first factors as an encoding matrix in the main

memory, the first factors being for encoding the original
data into check data, the check data being arranged as a
check matrix in the main memory; and

generating the check data using a parallel multiplier for

concurrently multiplying multiple data entries of a
matrix by a single factor, the generating of the check data
comprising ordering operations through the data matrix
and the encoding matrix using the parallel multiplier.

14. The storage medium of claim 13, wherein the generat-
ing of the check data further comprises processing the data by
the parallel multiplier in units of at least 64 bytes spread over
at least four of the data registers at a time.

15. The storage medium of claim 14, wherein the generat-
ing of the check data further comprises:

receiving by the parallel multiplier an input operand in the

at least four of the data registers; and

returning by the parallel multiplier the input operand intact

in the at least four of the data registers.

16. The storage medium of claim 14, wherein

consecutive ones of the computer instructions that process

each of the units of the data access separate ones of the
data registers,

the executing of the computer instructions on the process-

ing core further comprises concurrently executing the
consecutive ones of the computer instructions on the
processing core.

17. The storage medium of claim 13, wherein the parallel
multiplier comprises two lookup tables and the generating of
the check data further comprises using the parallel multiplier
with the two lookup tables to do concurrent multiplication of
4-bit quantities across 16byte-sized entries using the
PSHUFB (Packed Shuftle Bytes) or equivalent instruction.

18. The storage medium of claim 13, wherein the generat-
ing of the check data further comprises:

receiving by the parallel multiplier an input operand in at

least one of the data registers; and

returning by the parallel multiplier the input operand intact

in the at least one of the data registers.

#* #* #* #* #*

